Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Approximations of quantum-graph vertex couplings by singularly scaled potentials (1306.0881v1)

Published 4 Jun 2013 in math-ph, math.MP, math.SP, and quant-ph

Abstract: We investigate the limit properties of a family of Schr\"odinger operators of the form $H_\varepsilon= -\frac{\mathrm{d}2}{\mathrm{d}x2}+ \frac{\lambda(\varepsilon)}{\varepsilon2}Q \big(\frac{x}{\varepsilon}\big)$ acting on $n$-edge star graphs with Kirchhoff conditions imposed at the vertex. The real-valued potential $Q$ is supposed to have compact support and $\lambda(\cdot)$ to be analytic around $\varepsilon=0$ with $\lambda(0)=1$. We show that if the operator has a zero-energy resonance of order $m$ for $\varepsilon=1$ and $\lambda(1)=1$, in the limit $\varepsilon\to 0$ one obtains the Laplacian with a vertex coupling depending on $1+\frac12 m(2n-m+1)$ parameters. We prove the norm-resolvent convergence as well as the convergence of the corresponding on-shell scattering matrices. The obtained vertex couplings are of scale-invariant type provided $\lambda'(0)=0$; otherwise the scattering matrix depends on energy and the scaled potential becomes asymptotically opaque in the low-energy limit.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.