Papers
Topics
Authors
Recent
2000 character limit reached

Sets of lengths in maximal orders in central simple algebras

Published 4 Jun 2013 in math.RA | (1306.0834v2)

Abstract: Let $\mathcal O$ be a holomorphy ring in a global field $K$, and $R$ a classical maximal $\mathcal O$-order in a central simple algebra over $K$. We study sets of lengths of factorizations of cancellative elements of $R$ into atoms (irreducibles). In a large majority of cases there exists a transfer homomorphism to a monoid of zero-sum sequences over a ray class group of $\mathcal O$, which implies that all the structural finiteness results for sets of lengths---valid for commutative Krull monoids with finite class group---hold also true for $R$. If $\mathcal O$ is the ring of algebraic integers of a number field $K$, we prove that in the remaining cases no such transfer homomorphism can exist and that several invariants dealing with sets of lengths are infinite.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.