Multiply partition regular matrices (1306.0438v1)
Abstract: Let $A$ be a finite matrix with rational entries. We say that $A$ is {\it doubly image partition regular\/} if whenever the set ${\mathbb N}$ of positive integers is finitely coloured, there exists $\vec x$ such that the entries of $A\vec x$ are all the same colour (or {\it monochromatic\/}) and also, the entries of $\vec x$ are monochromatic. Which matrices are doubly image partition regular? More generally, we say that a pair of matrices $(A,B)$, where $A$ and $B$ have the same number of rows, is {\it doubly kernel partition regular\/} if whenever ${\mathbb N}$ is finitely coloured, there exist vectors $\vec x$ and $\vec y$, each monochromatic, such that $A \vec x + B \vec y = 0$. There is an obvious sufficient condition for the pair $(A,B)$ to be doubly kernel partition regular, namely that there exists a positive rational $c$ such that the matrix $M=(\begin{array}{ccccc}A&cB\end{array})$ is kernel partition regular. (That is, whenever ${\mathbb N}$ is finitely coloured, there exists monochromatic $\vec x$ such that $M \vec x=\vec 0$.) Our aim in this paper is to show that this sufficient condition is also necessary. As a consequence we have that a matrix $A$ is doubly image partition regular if and only if there is a positive rational $c$ such that the matrix $(\begin{array}{lr}A&cI\end{array})$ is kernel partition regular, where $I$ is the identity matrix of the appropriate size. We also prove extensions to the case of several matrices.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.