Papers
Topics
Authors
Recent
Search
2000 character limit reached

Qualitative detection of oil adulteration with machine learning approaches

Published 14 May 2013 in cs.CE and cs.LG | (1305.3149v1)

Abstract: The study focused on the machine learning analysis approaches to identify the adulteration of 9 kinds of edible oil qualitatively and answered the following three questions: Is the oil sample adulterant? How does it constitute? What is the main ingredient of the adulteration oil? After extracting the high-performance liquid chromatography (HPLC) data on triglyceride from 370 oil samples, we applied the adaptive boosting with multi-class Hamming loss (AdaBoost.MH) to distinguish the oil adulteration in contrast with the support vector machine (SVM). Further, we regarded the adulterant oil and the pure oil samples as ones with multiple labels and with only one label, respectively. Then multi-label AdaBoost.MH and multi-label learning vector quantization (ML-LVQ) model were built to determine the ingredients and their relative ratio in the adulteration oil. The experimental results on six measures show that ML-LVQ achieves better performance than multi-label AdaBoost.MH.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.