Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Vertex models, TASEP and Grothendieck polynomials (1305.3030v3)

Published 14 May 2013 in math-ph, cond-mat.stat-mech, math.MP, math.QA, and nlin.SI

Abstract: We examine the wavefunctions and their scalar products of a one-parameter family of integrable five vertex models. At a special point of the parameter, the model investigated is related to an irreversible interacting stochastic particle system the so-called totally asymmetric simple exclusion process (TASEP). By combining the quantum inverse scattering method with a matrix product representation of the wavefunctions, the on/off-shell wavefunctions of the five vertex models are represented as a certain determinant form. Up to some normalization factors, we find the wavefunctions are given by Grothendieck polynomials, which are a one-parameter deformation of Schur polynomials. Introducing a dual version of the Grothendieck polynomials, and utilizing the determinant representation for the scalar products of the wavefunctions, we derive a generalized Cauchy identity satisfied by the Grothendieck polynomials and their duals. Several representation theoretical formulae for Grothendieck polynomials are also presented. As a byproduct, the relaxation dynamics such as Green functions for the periodic TASEP are found to be described in terms of Grothendieck polynomials.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube