A weak Gordon type condition for absence of eigenvalues of one-dimensional Schrödinger operators
Abstract: We study one-dimensional Schr\"odinger operators with complex measures as potentials and present an improved criterion for absence of eigenvalues which involves a weak local periodicity condition. The criterion leads to sharp quantitative bounds on the eigenvalues. We apply our result to quasiperiodic measures as potentials.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.