2000 character limit reached
One-dimensional quantum walks via generating function and the CGMV method (1305.1722v1)
Published 8 May 2013 in math-ph, math.MP, math.PR, and quant-ph
Abstract: We treat a quantum walk (QW) on the line whose quantum coin at each vertex tends to be the identity as the distance goes to infinity. We obtain a limit theorem that this QW exhibits localization with not an exponential but a "power-law" decay around the origin and a "strongly" ballistic spreading called bottom localization in this paper. This limit theorem implies the weak convergence with linear scaling whose density has two delta measures at $x=0$ (the origin) and $x=1$ (the bottom) without continuous parts.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.