Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Channel capacities via $p$-summing norms (1305.1020v2)

Published 5 May 2013 in math.FA, math.OA, and quant-ph

Abstract: In this paper we show how \emph{the metric theory of tensor products} developed by Grothendieck perfectly fits in the study of channel capacities, a central topic in \emph{Shannon's information theory}. Furthermore, in the last years Shannon's theory has been generalized to the quantum setting to let the \emph{quantum information theory} step in. In this paper we consider the classical capacity of quantum channels with restricted assisted entanglement. In particular these capacities include the classical capacity and the unlimited entanglement-assisted classical capacity of a quantum channel. To deal with the quantum case we will use the noncommutative version of $p$-summing maps. More precisely, we prove that the (product state) classical capacity of a quantum channel with restricted assisted entanglement can be expressed as the derivative of a completely $p$-summing norm.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube