Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Maximum Lebesgue Extension of Monotone Convex Functions (1304.7934v2)

Published 30 Apr 2013 in math.FA, math.PR, and q-fin.RM

Abstract: Given a monotone convex function on the space of essentially bounded random variables with the Lebesgue property (order continuity), we consider its extension preserving the Lebesgue property to as big solid vector space of random variables as possible. We show that there exists a maximum such extension, with explicit construction, where the maximum domain of extension is obtained as a (possibly proper) subspace of a natural Orlicz-type space, characterized by a certain uniform integrability property. As an application, we provide a characterization of the Lebesgue property of monotone convex function on arbitrary solid spaces of random variables in terms of uniform integrability and a "nice" dual representation of the function.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.