Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 Pro
2000 character limit reached

Explicit Hilbert-Kunz functions of 2 x 2 determinantal rings (1304.7274v1)

Published 26 Apr 2013 in math.AC

Abstract: Let $k[X] = k[x_{i,j}: i = 1,..., m; j = 1,..., n]$ be the polynomial ring in $m n$ variables $x_{i,j}$ over a field $k$ of arbitrary characteristic. Denote by $I_2(X)$ the ideal generated by the $2 \times 2$ minors of the generic $m \times n$ matrix $[x_{i,j}]$. We give a closed formulation for the dimensions of the $k$-vector space $k[X]/(I_2(X) + (x_{1,1}q,..., x_{m,n}q))$ as $q$ varies over all positive integers, i.e., we give a closed form for the generalized Hilbert-Kunz function of the determinantal ring $k[X]/I_{2}[X]$. We also give a closed formulation of dimensions of related quotients of $k[X]/I_{2}[X]$. In the process we establish a formula for the numbers of some compositions (ordered partitions of integers), and we give a proof of a new binomial identity.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.