Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bosonic transport through a chain of quantum dots

Published 19 Apr 2013 in cond-mat.mes-hall | (1304.5503v2)

Abstract: The particle transport through a chain of quantum dots coupled to two bosonic reservoirs is studied. For the case of reservoirs of non-interacting bosonic particles, we derive an exact set of stochastic differential equations, whose memory kernels and driving noise are characterised entirely by the properties of the reservoirs. Going to the Markovian limit an analytically solvable case is presented. The effect of interparticle interactions on the transient behaviour of the system, when both reservoirs are instantaneously coupled to an empty chain of quantum dots, is approximated by a semiclassical method, known as the Truncated Wigner approximation. The steady-state particle flow through the chain and the mean particle occupations are explained via the spectral properties of the interacting system.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.