Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A high-dimensional two-sample test for the mean using random subspaces (1304.4564v1)

Published 16 Apr 2013 in stat.ME and stat.CO

Abstract: A common problem in genetics is that of testing whether a set of highly dependent gene expressions differ between two populations, typically in a high-dimensional setting where the data dimension is larger than the sample size. Most high-dimensional tests for the equality of two mean vectors rely on naive diagonal or trace estimators of the covariance matrix, ignoring dependencies between variables. A test recently proposed by Lopes et al. (2012) implicitly incorporates dependencies by using random pseudo-projections to a lower-dimensional space. Their test offers higher power when the variables are dependent, but lacks desirable invariance properties and relies on asymptotic p-values that are too conservative. We illustrate how a permutation approach can be used to obtain p-values for the Lopes et al. test and how modifying the test using random subspaces leads to a test statistic that is invariant under linear transformations of the marginal distributions. The resulting test does not rely on assumptions about normality or the structure of the covariance matrix. We show by simulation that the new test has higher power than competing tests in realistic settings motivated by microarray gene expression data. We also discuss the computational aspects of high-dimensional permutation tests and provide an efficient R implementation of the proposed test.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.