Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multispectral Spatial Characterization: Application to Mitosis Detection in Breast Cancer Histopathology (1304.4041v1)

Published 15 Apr 2013 in cs.CV

Abstract: Accurate detection of mitosis plays a critical role in breast cancer histopathology. Manual detection and counting of mitosis is tedious and subject to considerable inter- and intra-reader variations. Multispectral imaging is a recent medical imaging technology, proven successful in increasing the segmentation accuracy in other fields. This study aims at improving the accuracy of mitosis detection by developing a specific solution using multispectral and multifocal imaging of breast cancer histopathological data. We propose to enable clinical routine-compliant quality of mitosis discrimination from other objects. The proposed framework includes comprehensive analysis of spectral bands and z-stack focus planes, detection of expected mitotic regions (candidates) in selected focus planes and spectral bands, computation of multispectral spatial features for each candidate, selection of multispectral spatial features and a study of different state-of-the-art classification methods for candidates classification as mitotic or non mitotic figures. This framework has been evaluated on MITOS multispectral medical dataset and achieved 60% detection rate and 57% F-Measure. Our results indicate that multispectral spatial features have more information for mitosis classification in comparison with white spectral band features, being therefore a very promising exploration area to improve the quality of the diagnosis assistance in histopathology.

Citations (2)

Summary

We haven't generated a summary for this paper yet.