Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Minimum Vector Rank and Complement Critical Graphs (1304.3751v1)

Published 13 Apr 2013 in math.CO

Abstract: Given a graph G, a real orthogonal representation of G is a function from its set of vertices to Rd such that two vertices are mapped to orthogonal vectors if and only if they are not neighbors. The minimum vector rank of a graph is the smallest dimension d for which such a representation exists. This quantity is closely related to the minimum semidefinite rank of G, which has been widely studied. Considering the minimum vector rank as an analogue of the chromatic number, this work defines critical graphs as those for which the removal of any vertex decreases the minimum vector rank; and complement critical graphs as those for which the removal of any vertex decreases the minimum vector rank of either the graph or its complement. It establishes necessary and sufficient conditions for certain classes of graphs to be complement critical, in the process calculating their minimum vector rank. In addition, this work demonstrates that complement critical graphs form a sufficient set to prove the Graph Complement Conjecture, which remains open.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.