Papers
Topics
Authors
Recent
Search
2000 character limit reached

Image Classification by Feature Dimension Reduction and Graph based Ranking

Published 9 Apr 2013 in cs.CV | (1304.2683v1)

Abstract: Dimensionality reduction (DR) of image features plays an important role in image retrieval and classification tasks. Recently, two types of methods have been proposed to improve the both the accuracy and efficiency for the dimensionality reduction problem. One uses Non-negative matrix factorization (NMF) to describe the image distribution on the space of base matrix. Another one for dimension reduction trains a subspace projection matrix to project original data space into some low-dimensional subspaces which have deep architecture, so that the low-dimensional codes would be learned. At the same time, the graph based similarity learning algorithm which tries to exploit contextual information for improving the effectiveness of image rankings is also proposed for image class and retrieval problem. In this paper, after above two methods mentioned are utilized to reduce the high-dimensional features of images respectively, we learn the graph based similarity for the image classification problem. This paper compares the proposed approach with other approaches on an image database.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.