Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential Randomized Algorithms for Convex Optimization in the Presence of Uncertainty (1304.2222v3)

Published 8 Apr 2013 in cs.SY and math.OC

Abstract: In this paper, we propose new sequential randomized algorithms for convex optimization problems in the presence of uncertainty. A rigorous analysis of the theoretical properties of the solutions obtained by these algorithms, for full constraint satisfaction and partial constraint satisfaction, respectively, is given. The proposed methods allow to enlarge the applicability of the existing randomized methods to real-world applications involving a large number of design variables. Since the proposed approach does not provide a priori bounds on the sample complexity, extensive numerical simulations, dealing with an application to hard-disk drive servo design, are provided. These simulations testify the goodness of the proposed solution.

Citations (52)

Summary

We haven't generated a summary for this paper yet.