Gravito-Electromagnetic Perturbations of Kerr-Newman Black Holes: Stability and Isospectrality in the Slow-Rotation Limit (1304.1160v2)
Abstract: The most general stationary black-hole solution of Einstein-Maxwell theory in vacuum is the Kerr-Newman metric, specified by three parameters: mass M, spin J and charge Q. Within classical general relativity, the most important and challenging open problem in black-hole perturbation theory is the study of gravitational and electromagnetic fields in the Kerr-Newman geometry, because of the indissoluble coupling of the perturbation functions. Here we circumvent this long-standing problem by working in the slow-rotation limit. We compute the quasinormal modes up to linear order in J for any value of Q and provide the first, fully-consistent stability analysis of the Kerr-Newman metric. For scalar perturbations the quasinormal modes can be computed exactly, and we demonstrate that the method is accurate within 3% for spins J/Jmax<~0.5, where Jmax is the maximum allowed spin for any value of Q. Quite remarkably, we find numerical evidence that the axial and polar sectors of the gravito-electromagnetic perturbations are isospectral to linear order in the spin. The extension of our results to nonasymptotically flat space-times could be useful in the context of gauge/gravity dualities and string theory.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.