Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fractional Non-Linear, Linear and Sublinear Death Processes (1304.0189v1)

Published 31 Mar 2013 in math.PR

Abstract: This paper is devoted to the study of a fractional version of non-linear $\mathpzc{M}\nu(t)$, $t>0$, linear $M\nu (t)$, $t>0$ and sublinear $\mathfrak{M}\nu (t)$, $t>0$ death processes. Fractionality is introduced by replacing the usual integer-order derivative in the difference-differential equations governing the state probabilities, with the fractional derivative understood in the sense of Dzhrbashyan--Caputo. We derive explicitly the state probabilities of the three death processes and examine the related probability generating functions and mean values. A useful subordination relation is also proved, allowing us to express the death processes as compositions of their classical counterparts with the random time process $T_{2 \nu} (t)$, $t>0$. This random time has one-dimensional distribution which is the folded solution to a Cauchy problem of the fractional diffusion equation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.