Maximal Blaschke Products
Abstract: We consider the classical problem of maximizing the derivative at a fixed point over the set of all bounded analytic functions in the unit disk with prescribed critical points. We show that the extremal function is essentially unique and always an indestructible Blaschke product. This result extends the Nehari--Schwarz Lemma and leads to a new class of Blaschke products called maximal Blaschke products. We establish a number of properties of maximal Blaschke products, which indicate that maximal Blaschke products constitute an appropriate infinite generalization of the class of finite Blaschke products.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.