Estimation of the lead-lag parameter from non-synchronous data
Abstract: We propose a simple continuous time model for modeling the lead-lag effect between two financial assets. A two-dimensional process $(X_t,Y_t)$ reproduces a lead-lag effect if, for some time shift $\vartheta\in \mathbb{R}$, the process $(X_t,Y_{t+\vartheta})$ is a semi-martingale with respect to a certain filtration. The value of the time shift $\vartheta$ is the lead-lag parameter. Depending on the underlying filtration, the standard no-arbitrage case is obtained for $\vartheta=0$. We study the problem of estimating the unknown parameter $\vartheta\in \mathbb{R}$, given randomly sampled non-synchronous data from $(X_t)$ and $(Y_t)$. By applying a certain contrast optimization based on a modified version of the Hayashi-Yoshida covariation estimator, we obtain a consistent estimator of the lead-lag parameter, together with an explicit rate of convergence governed by the sparsity of the sampling design.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.