Super-A-polynomial (1303.3709v1)
Abstract: We review a construction of a new class of algebraic curves, called super-A-polynomials, and their quantum generalizations. The super-A-polynomial is a two-parameter deformation of the A-polynomial known from knot theory or Chern-Simons theory with SL(2,C) gauge group. The two parameters of the super-A-polynomial encode, respectively, the t-deformation which leads to the "refined A-polynomial", and the Q-deformation which leads to the augmentation polynomial of knot contact homology. For a given knot, the super-A-polynomial encodes the asymptotics of the corresponding Sr-colored HOMFLY homology for large r, while the quantum super-A-polynomial provides recursion relations for such homology theories for each r. The super-A-polynomial also admits a simple physical interpretation as the defining equation for the space of SUSY vacua in a circle compactification of the effective 3d N=2 theory associated to a given knot (complement). We discuss properties of super-A-polynomials and illustrate them in many examples.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.