Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Low-rank Constrained Constant Modulus Beamforming Algorithms using Joint Iterative Optimization of Parameters (1303.3638v1)

Published 14 Mar 2013 in cs.IT and math.IT

Abstract: This paper proposes a robust reduced-rank scheme for adaptive beamforming based on joint iterative optimization (JIO) of adaptive filters. The scheme provides an efficient way to deal with filters with large number of elements. It consists of a bank of full-rank adaptive filters that forms a transformation matrix and an adaptive reduced-rank filter that operates at the output of the bank of filters. The transformation matrix projects the received vector onto a low-dimension vector, which is processed by the reduced-rank filter to estimate the desired signal. The expressions of the transformation matrix and the reduced-rank weight vector are derived according to the constrained constant modulus (CCM) criterion. Two novel low-complexity adaptive algorithms are devised for the implementation of the proposed scheme with respect to different constrained conditions. Simulations are performed to show superior performance of the proposed algorithms in comparison with the existing methods.

Summary

We haven't generated a summary for this paper yet.