Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Extremes of scale mixtures of multivariate time series (1303.3413v2)

Published 14 Mar 2013 in math.PR

Abstract: Factor models have large potencial in the modeling of several natural and human phenomena. In this paper we consider a multivariate time series $\mb{Y}_n$, ${n\geq 1}$, rescaled through random factors $\mb{T}_n$, ${n\geq 1}$, extending some scale mixture models in the literature. We analyze its extremal behavior by deriving the maximum domain of attraction and the multivariate extremal index, which leads to new ways to construct multivariate extreme value distributions. The computation of the multivariate extremal index and the characterization of the tail dependence show the interesting property of these models that however much it is the dependence within and between factors $\mb{T}_n$, ${n\geq 1}$, the extremal index of the model is unit whenever $\mb{Y}_n$, ${n\geq 1}$, presents cross-sectional and sequencial tail independence. We illustrate with examples of thinned multivariate time series and multivariate autoregressive processes with random coefficients. An application of these latter to financial data is presented at the end.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.