Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Some logically weak Ramseyan theorems (1303.3331v2)

Published 14 Mar 2013 in math.LO

Abstract: We study four families of consequences of Ramsey's Theorem from the viewpoint of reverse mathematics. The first, which we call the Achromatic Ramsey Theorem, is from a partition relation introduced by Erd\H{o}s, Hajnal and Rado: $\omega \to [\omega]r_{c,\leq d}$, which asserts that for every $f: [\omega]r \to c$ there exists an infinite $H$ with $|f([H]r)| \leq d$. The second and third are the Free Set Theorem and the Thin Set Theorem, which were introduced by Harvey Friedman. And the last is the Rainbow Ramsey Theorem. We show that, most theorems from these families are quite weak, i.e., they are strictly weaker than $\operatorname{ACA}_0$ over $\operatorname{RCA}_0$. Interestingly, these families turn out to be closely related. We establish the so-called strong cone avoidance property of most instances of the Achromatic Ramsey Theorem by an induction of exponents, then apply this and a similar induction to obtain the strong cone avoidance property of the Free Set Theorem. From the strong cone avoidance property of the Achromatic Ramsey Theorem and the Free Set Theorem, we derive the strong cone property of the Thin Set Theorem and the Rainbow Ramsey Theorem. It follws easily that a theorem with the strong cone avoidance property does not imply $\operatorname{ACA}_0$ over $\operatorname{RCA}_0$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.