Papers
Topics
Authors
Recent
Search
2000 character limit reached

Second-order differentiability for solutions of elliptic equations in the plane

Published 13 Mar 2013 in math.AP | (1303.3254v1)

Abstract: For a second-order elliptic equation of nondivergence form in the plane, we investigate conditions on the coefficients which imply that all strong solutions have first-order derivatives that are Lipschitz continuous or differentiable at a given point. We assume the coefficients have modulus of continuity satisfying the square-Dini condition, and obtain additional conditions associated with a dynamical system that is derived from the coefficients of the elliptic equation. Our results extend those of previous authors who assume the modulus of continuity satisfies the Dini condition.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.