Papers
Topics
Authors
Recent
2000 character limit reached

Optimal stochastic transport in inhomogeneous thermal environments

Published 13 Mar 2013 in cond-mat.stat-mech | (1303.3206v1)

Abstract: We consider optimization of the average entropy production in inhomogeneous temperature environments within the framework of stochastic thermodynamics. For systems modeled by Langevin equations (e.g. a colloidal particle in a heat bath) it has been recently shown that a space dependent temperature breaks the time reversal symmetry of the fast velocity degrees of freedom resulting in an anomalous contribution to the entropy production of the overdamped dynamics. We show that optimization of entropy production is determined by an auxiliary deterministic problem describing motion on a curved manifold in a potential. The "anomalous contribution" to entropy plays the role of the potential and the inverse of the diffusion tensor is the metric. We also find that entropy production is not minimized by adiabatically slow, quasi-static protocols but there is a finite optimal duration for the transport process. As an example we discuss the case of a linearly space dependent diffusion coefficient.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.