Papers
Topics
Authors
Recent
Search
2000 character limit reached

Statistical Texture Features based Handwritten and Printed Text Classification in South Indian Documents

Published 13 Mar 2013 in cs.CV | (1303.3087v1)

Abstract: In this paper, we use statistical texture features for handwritten and printed text classification. We primarily aim for word level classification in south Indian scripts. Words are first extracted from the scanned document. For each extracted word, statistical texture features are computed such as mean, standard deviation, smoothness, moment, uniformity, entropy and local range including local entropy. These feature vectors are then used to classify words via k-NN classifier. We have validated the approach over several different datasets. Scripts like Kannada, Telugu, Malayalam and Hindi i.e., Devanagari are primarily employed where an average classification rate of 99.26% is achieved. In addition, to provide an extensibility of the approach, we address Roman script by using publicly available dataset and interesting results are reported.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.