Papers
Topics
Authors
Recent
Search
2000 character limit reached

Univalent categories and the Rezk completion

Published 4 Mar 2013 in math.CT and math.LO | (1303.0584v2)

Abstract: We develop category theory within Univalent Foundations, which is a foundational system for mathematics based on a homotopical interpretation of dependent type theory. In this system, we propose a definition of "category" for which equality and equivalence of categories agree. Such categories satisfy a version of the Univalence Axiom, saying that the type of isomorphisms between any two objects is equivalent to the identity type between these objects; we call them "saturated" or "univalent" categories. Moreover, we show that any category is weakly equivalent to a univalent one in a universal way. In homotopical and higher-categorical semantics, this construction corresponds to a truncated version of the Rezk completion for Segal spaces, and also to the stack completion of a prestack.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.