A Probabilistic Approach to Hierarchical Model-based Diagnosis
Abstract: Model-based diagnosis reasons backwards from a functional schematic of a system to isolate faults given observations of anomalous behavior. We develop a fully probabilistic approach to model based diagnosis and extend it to support hierarchical models. Our scheme translates the functional schematic into a Bayesian network and diagnostic inference takes place in the Bayesian network. A Bayesian network diagnostic inference algorithm is modified to take advantage of the hierarchy to give computational gains.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.