Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Groups acting on products of trees, tiling systems and analytic K-theory (1302.5784v1)

Published 23 Feb 2013 in math.OA

Abstract: Let $T_1$ and $T_2$ be homogeneous trees of even degree $\ge 4$. A BM group $\Gamma$ is a torsion free discrete subgroup of $\aut (T_1) \times \aut (T_2)$ which acts freely and transitively on the vertex set of $T_1 \times T_2$. This article studies dynamical systems associated with BM groups. A higher rank Cuntz-Krieger algebra $\mathcal A(\G)$ is associated both with a 2-dimensional tiling system and with a boundary action of a BM group $\Gamma$. An explicit expression is given for the K-theory of $\mathcal A(\G)$. In particular $K_0=K_1$. A complete enumeration of possible BM groups $\G$ is given for a product homogeneous trees of degree 4, and the K-groups are computed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.