Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Minimizing properties of critical points of quasi-local energy (1302.5321v2)

Published 21 Feb 2013 in math.DG and gr-qc

Abstract: In relativity, the energy of a moving particle depends on the observer, and the rest mass is the minimal energy seen among all observers. The Wang-Yau quasi-local mass for a surface in spacetime introduced in [7] and [8] is defined by minimizing quasi-local energy associated with admissible isometric embeddings of the surface into the Minkowski space. A critical point of the quasi-local energy is an isometric embedding satisfying the Euler-Lagrange equation. In this article, we prove results regarding both local and global minimizing properties of critical points of the Wang-Yau quasi-local energy. In particular, under a condition on the mean curvature vector we show a critical point minimizes the quasi-local energy locally. The same condition also implies that the critical point is globally minimizing among all axially symmetric embedding provided the image of the associated isometric embedding lies in a totally geodesic Euclidean 3-space.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.