Optimal Discriminant Functions Based On Sampled Distribution Distance for Modulation Classification (1302.4773v1)
Abstract: In this letter, we derive the optimal discriminant functions for modulation classification based on the sampled distribution distance. The proposed method classifies various candidate constellations using a low complexity approach based on the distribution distance at specific testpoints along the cumulative distribution function. This method, based on the Bayesian decision criteria, asymptotically provides the minimum classification error possible given a set of testpoints. Testpoint locations are also optimized to improve classification performance. The method provides significant gains over existing approaches that also use the distribution of the signal features.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.