Papers
Topics
Authors
Recent
2000 character limit reached

Decay of correlations for normally hyperbolic trapping

Published 18 Feb 2013 in math-ph, math.AP, math.DS, and math.MP | (1302.4483v3)

Abstract: We prove that for evolution problems with normally hyperbolic trapping in phase space, correlations decay exponentially in time. Normal hyperbolic trapping means that the trapped set is smooth and symplectic and that the flow is hyperbolic in directions transversal to it. Flows with this structure include contact Anosov flows, classical flows in molecular dynamics, and null geodesic flows for black holes metrics. The decay of correlations is a consequence of the existence of resonance free strips for Green's functions (cut-off resolvents) and polynomial bounds on the growth sof those functions in the semiclassical parameter.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.