Papers
Topics
Authors
Recent
2000 character limit reached

Quasi-Bayesian Strategies for Efficient Plan Generation: Application to the Planning to Observe Problem

Published 13 Feb 2013 in cs.AI | (1302.3570v1)

Abstract: Quasi-Bayesian theory uses convex sets of probability distributions and expected loss to represent preferences about plans. The theory focuses on decision robustness, i.e., the extent to which plans are affected by deviations in subjective assessments of probability. The present work presents solutions for plan generation when robustness of probability assessments must be included: plans contain information about the robustness of certain actions. The surprising result is that some problems can be solved faster in the Quasi-Bayesian framework than within usual Bayesian theory. We investigate this on the planning to observe problem, i.e., an agent must decide whether to take new observations or not. The fundamental question is: How, and how much, to search for a "best" plan, based on the robustness of probability assessments? Plan generation algorithms are derived in the context of material classification with an acoustic robotic probe. A package that constructs Quasi-Bayesian plans is available through anonymous ftp.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.