Papers
Topics
Authors
Recent
2000 character limit reached

A consistent clustering-based approach to estimating the number of change-points in highly dependent time-series

Published 14 Feb 2013 in stat.ML, cs.IT, cs.LG, math.IT, math.ST, and stat.TH | (1302.3407v1)

Abstract: The problem of change-point estimation is considered under a general framework where the data are generated by unknown stationary ergodic process distributions. In this context, the consistent estimation of the number of change-points is provably impossible. However, it is shown that a consistent clustering method may be used to estimate the number of change points, under the additional constraint that the correct number of process distributions that generate the data is provided. This additional parameter has a natural interpretation in many real-world applications. An algorithm is proposed that estimates the number of change-points and locates the changes. The proposed algorithm is shown to be asymptotically consistent; its empirical evaluations are provided.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.