Geometrical complexity of data approximators
Abstract: There are many methods developed to approximate a cloud of vectors embedded in high-dimensional space by simpler objects: starting from principal points and linear manifolds to self-organizing maps, neural gas, elastic maps, various types of principal curves and principal trees, and so on. For each type of approximators the measure of the approximator complexity was developed too. These measures are necessary to find the balance between accuracy and complexity and to define the optimal approximations of a given type. We propose a measure of complexity (geometrical complexity) which is applicable to approximators of several types and which allows comparing data approximations of different types.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.