Papers
Topics
Authors
Recent
2000 character limit reached

Exact distributions of the number of distinct and common sites visited by N independent random walkers

Published 11 Feb 2013 in cond-mat.stat-mech, cond-mat.dis-nn, and math.PR | (1302.2452v1)

Abstract: We study the number of distinct sites S_N(t) and common sites W_N(t) visited by N independent one dimensional random walkers, all starting at the origin, after t time steps. We show that these two random variables can be mapped onto extreme value quantities associated to N independent random walkers. Using this mapping, we compute exactly their probability distributions P_Nd(S,t) and P_Nd(W,t) for any value of N in the limit of large time t, where the random walkers can be described by Brownian motions. In the large N limit one finds that S_N(t)/\sqrt{t} \propto 2 \sqrt{\log N} + \widetilde{s}/(2 \sqrt{\log N}) and W_N(t)/\sqrt{t} \propto \widetilde{w}/N where \widetilde{s} and \widetilde{w} are random variables whose probability density functions (pdfs) are computed exactly and are found to be non trivial. We verify our results through direct numerical simulations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.