Papers
Topics
Authors
Recent
2000 character limit reached

Exact distributions of the number of distinct and common sites visited by N independent random walkers (1302.2452v1)

Published 11 Feb 2013 in cond-mat.stat-mech, cond-mat.dis-nn, and math.PR

Abstract: We study the number of distinct sites S_N(t) and common sites W_N(t) visited by N independent one dimensional random walkers, all starting at the origin, after t time steps. We show that these two random variables can be mapped onto extreme value quantities associated to N independent random walkers. Using this mapping, we compute exactly their probability distributions P_Nd(S,t) and P_Nd(W,t) for any value of N in the limit of large time t, where the random walkers can be described by Brownian motions. In the large N limit one finds that S_N(t)/\sqrt{t} \propto 2 \sqrt{\log N} + \widetilde{s}/(2 \sqrt{\log N}) and W_N(t)/\sqrt{t} \propto \widetilde{w}/N where \widetilde{s} and \widetilde{w} are random variables whose probability density functions (pdfs) are computed exactly and are found to be non trivial. We verify our results through direct numerical simulations.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.