Papers
Topics
Authors
Recent
2000 character limit reached

Discrete Distributions in the Tardos Scheme, Revisited (1302.1741v2)

Published 7 Feb 2013 in cs.CR

Abstract: The Tardos scheme is a well-known traitor tracing scheme to protect copyrighted content against collusion attacks. The original scheme contained some suboptimal design choices, such as the score function and the distribution function used for generating the biases. Skoric et al. previously showed that a symbol-symmetric score function leads to shorter codes, while Nuida et al. obtained the optimal distribution functions for arbitrary coalition sizes. Later, Nuida et al. showed that combining these results leads to even shorter codes when the coalition size is small. We extend their analysis to the case of large coalitions and prove that these optimal distributions converge to the arcsine distribution, thus showing that the arcsine distribution is asymptotically optimal in the symmetric Tardos scheme. We also present a new, practical alternative to the discrete distributions of Nuida et al. and give a comparison of the estimated lengths of the fingerprinting codes for each of these distributions.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.