A game-theoretic framework for classifier ensembles using weighted majority voting with local accuracy estimates
Abstract: In this paper, a novel approach for the optimal combination of binary classifiers is proposed. The classifier combination problem is approached from a Game Theory perspective. The proposed framework of adapted weighted majority rules (WMR) is tested against common rank-based, Bayesian and simple majority models, as well as two soft-output averaging rules. Experiments with ensembles of Support Vector Machines (SVM), Ordinary Binary Tree Classifiers (OBTC) and weighted k-nearest-neighbor (w/k-NN) models on benchmark datasets indicate that this new adaptive WMR model, employing local accuracy estimators and the analytically computed optimal weights outperform all the other simple combination rules.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.