Papers
Topics
Authors
Recent
2000 character limit reached

A game-theoretic framework for classifier ensembles using weighted majority voting with local accuracy estimates

Published 3 Feb 2013 in cs.LG | (1302.0540v1)

Abstract: In this paper, a novel approach for the optimal combination of binary classifiers is proposed. The classifier combination problem is approached from a Game Theory perspective. The proposed framework of adapted weighted majority rules (WMR) is tested against common rank-based, Bayesian and simple majority models, as well as two soft-output averaging rules. Experiments with ensembles of Support Vector Machines (SVM), Ordinary Binary Tree Classifiers (OBTC) and weighted k-nearest-neighbor (w/k-NN) models on benchmark datasets indicate that this new adaptive WMR model, employing local accuracy estimators and the analytically computed optimal weights outperform all the other simple combination rules.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.