Minimum Distance Distribution of Irregular Generalized LDPC Code Ensembles
Abstract: In this paper, the minimum distance distribution of irregular generalized LDPC (GLDPC) code ensembles is investigated. Two classes of GLDPC code ensembles are analyzed; in one case, the Tanner graph is regular from the variable node perspective, and in the other case the Tanner graph is completely unstructured and irregular. In particular, for the former ensemble class we determine exactly which ensembles have minimum distance growing linearly with the block length with probability approaching unity with increasing block length. This work extends previous results concerning LDPC and regular GLDPC codes to the case where a hybrid mixture of check node types is used.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.