Papers
Topics
Authors
Recent
2000 character limit reached

Using Bayesian Analysis and Gaussian Processes to Infer Electron Temperature and Density Profiles on the MAST Experiment (1301.7487v2)

Published 31 Jan 2013 in physics.plasm-ph

Abstract: A unified, Bayesian inference of midplane electron temperature and density profiles using both Thompson scattering (TS) and interferometric data is presented. Beyond the Bayesian nature of the analysis, novel features of the inference are the use of a Gaussian process prior to infer a mollification length-scale of inferred profiles and the use of Gauss-Laguerre quadratures to directly calculate the depolarisation term associated with the TS forward model. Results are presented from an application of the method to data from the high resolution TS system on the Mega-Ampere Spherical Tokamak, along with a comparison to profiles coming from the standard analysis carried out on that system.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.