Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Isoptic curves of conic sections in constant curvature geometries (1301.6991v2)

Published 29 Jan 2013 in math.GT and math.MG

Abstract: In this paper we consider the isoptic curves on the 2-dimensional geometries of constant curvature $\bE2,~\bH2,~\cE2$. The topic is widely investigated in the Euclidean plane $\bE2$ see for example \cite{CMM91} and \cite{Wi} and the references given there, but in the hyperbolic and elliptic plane there are few results in this topic (see \cite{CsSz1} and \cite{CsSz2}). In this paper we give a review on the preliminary results of the isoptics of Euclidean and hyperbolic curves and develop a procedure to study the isoptic curves in the hyperbolic and elliptic plane geometries and apply it for some geometric objects e.g. proper conic sections. We use for the computations the classical models which are based on the projectiv interpretation of the hyperbolic and elliptic geometry and in this manner the isoptic curves can be visualized on the Euclidean screen of computer.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.