Papers
Topics
Authors
Recent
2000 character limit reached

Inference in Multiply Sectioned Bayesian Networks with Extended Shafer-Shenoy and Lazy Propagation

Published 23 Jan 2013 in cs.AI | (1301.6749v1)

Abstract: As Bayesian networks are applied to larger and more complex problem domains, search for flexible modeling and more efficient inference methods is an ongoing effort. Multiply sectioned Bayesian networks (MSBNs) extend the HUGIN inference for Bayesian networks into a coherent framework for flexible modeling and distributed inference.Lazy propagation extends the Shafer-Shenoy and HUGIN inference methods with reduced space complexity. We apply the Shafer-Shenoy and lazy propagation to inference in MSBNs. The combination of the MSBN framework and lazy propagation provides a better framework for modeling and inference in very large domains. It retains the modeling flexibility of MSBNs and reduces the runtime space complexity, allowing exact inference in much larger domains given the same computational resources.

Citations (34)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.