Papers
Topics
Authors
Recent
2000 character limit reached

SPOOK: A System for Probabilistic Object-Oriented Knowledge Representation

Published 23 Jan 2013 in cs.AI | (1301.6733v1)

Abstract: In previous work, we pointed out the limitations of standard Bayesian networks as a modeling framework for large, complex domains. We proposed a new, richly structured modeling language, {em Object-oriented Bayesian Netorks}, that we argued would be able to deal with such domains. However, it turns out that OOBNs are not expressive enough to model many interesting aspects of complex domains: the existence of specific named objects, arbitrary relations between objects, and uncertainty over domain structure. These aspects are crucial in real-world domains such as battlefield awareness. In this paper, we present SPOOK, an implemented system that addresses these limitations. SPOOK implements a more expressive language that allows it to represent the battlespace domain naturally and compactly. We present a new inference algorithm that utilizes the model structure in a fundamental way, and show empirically that it achieves orders of magnitude speedup over existing approaches.

Citations (129)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.