Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

The distribution of the variance of primes in arithmetic progressions (1301.5663v2)

Published 23 Jan 2013 in math.NT and math.PR

Abstract: Hooley conjectured that the variance V(x;q) of the distribution of primes up to x in the arithmetic progressions modulo q is asymptotically x log q, in some unspecified range of q\leq x. On average over 1\leq q \leq Q, this conjecture is known unconditionally in the range x/(log x)A \leq Q \leq x; this last range can be improved to x{\frac 12+\epsilon} \leq Q \leq x under the Generalized Riemann Hypothesis (GRH). We argue that Hooley's conjecture should hold down to (loglog x){1+o(1)} \leq q \leq x for all values of q, and that this range is best possible. We show under GRH and a linear independence hypothesis on the zeros of Dirichlet L-functions that for moderate values of q, \phi(q)e{-y}V(ey;q) has the same distribution as that of a certain random variable of mean asymptotically \phi(q) log q and of variance asymptotically 2\phi(q)(log q)2. Our estimates on the large deviations of this random variable allow us to predict the range of validity of Hooley's Conjecture.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.