Papers
Topics
Authors
Recent
2000 character limit reached

On the Dynamics of Large Particle Systems in the Mean Field Limit (1301.5494v1)

Published 23 Jan 2013 in math.AP, math-ph, and math.MP

Abstract: This course explains how the usual mean field evolution partial differential equations (PDEs) in Statistical Physics - such as the Vlasov-Poisson system, the vorticity formulation of the two-dimensional Euler equation for incompressible fluids, or the time-dependent Hartree equation in quantum mechanics - can be rigorously derived from first principles, i.e. from the fundamental microscopic equations that govern the evolution of large, interacting particle systems. The emphasis is put on the mathematical methods used in these derivations, such as Dobrushin's stability estimate in the Monge-Kantorovich distance for the empirical measures built on the solution of the N-particle motion equations in classical mechanics, or the theory of BBGKY hierarchies in the case of classical as well as quantum problems. We explain in detail how these different approaches are related; in particular we insist on the notion of chaotic sequences and on the propagation of chaos in the BBGKY hierarchy as the number of particles tends to infinity.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.