Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Lieb-Thirring type inequalities for non self-adjoint perturbations of magnetic Schrödinger operators (1301.5169v3)

Published 22 Jan 2013 in math-ph, math.MP, and math.SP

Abstract: Let $H := H_{0} + V$ and $H_{\perp} := H_{0,\perp} + V$ be respectively perturbations of the free Schr\"odinger operators $H_{0}$ on $L{2}\big(\mathbb{R}{2d+1}\big)$ and $H_{0,\perp}$ on $L{2}\big(\mathbb{R}{2d}\big)$, $d \geq 1$ with constant magnetic field of strength $b>0$, and $V$ is a complex relatively compact perturbation. We prove Lieb-Thirring type inequalities for the discrete spectrum of $H$ and $H_{\perp}$. In particular, these estimates give $a\, priori$ information on the distribution of the discrete eigenvalues around the Landau levels of the operator, and describe how fast sequences of eigenvalues converge.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.