Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Bayesian Non-Parametric Approach to Asymmetric Dynamic Conditional Correlation Model With Application to Portfolio Selection (1301.5129v2)

Published 22 Jan 2013 in q-fin.PM and stat.AP

Abstract: We propose a Bayesian non-parametric approach for modeling the distribution of multiple returns. In particular, we use an asymmetric dynamic conditional correlation (ADCC) model to estimate the time-varying correlations of financial returns where the individual volatilities are driven by GJR-GARCH models. The ADCC-GJR-GARCH model takes into consideration the asymmetries in individual assets' volatilities, as well as in the correlations. The errors are modeled using a Dirichlet location-scale mixture of multivariate Gaussian distributions allowing for a great flexibility in the return distribution in terms of skewness and kurtosis. Model estimation and prediction are developed using MCMC methods based on slice sampling techniques. We carry out a simulation study to illustrate the flexibility of the proposed approach. We find that the proposed DPM model is able to adapt to several frequently used distribution models and also accurately estimates the posterior distribution of the volatilities of the returns, without assuming any underlying distribution. Finally, we present a financial application using Apple and NASDAQ Industrial index data to solve a portfolio allocation problem. We find that imposing a restrictive parametric distribution can result into underestimation of the portfolio variance, whereas DPM model is able to overcome this problem.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.