Papers
Topics
Authors
Recent
2000 character limit reached

Mirror symmetry for orbifold Hurwitz numbers (1301.4871v1)

Published 21 Jan 2013 in math.AG, hep-th, math-ph, and math.MP

Abstract: We study mirror symmetry for orbifold Hurwitz numbers. We show that the Laplace transform of orbifold Hurwitz numbers satisfy a differential recursion, which is then proved to be equivalent to the integral recursion of Eynard and Orantin with spectral curve given by the r-Lambert curve. We argue that the r-Lambert curve also arises in the infinite framing limit of orbifold Gromov-Witten theory of [C3/(Z/rZ)]. Finally, we prove that the mirror model to orbifold Hurwitz numbers admits a quantum curve.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.