Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

On the use of fractional calculus for the probabilistic characterization of random variables (1301.4867v1)

Published 21 Jan 2013 in math-ph, math.MP, math.ST, physics.data-an, and stat.TH

Abstract: In this paper, the classical problem of the probabilistic characterization of a random variable is re-examined. A random variable is usually described by the probability density function (PDF) or by its Fourier transform, namely the characteristic function (CF). The CF can be further expressed by a Taylor series involving the moments of the random variable. However, in some circumstances, the moments do not exist and the Taylor expansion of the CF is useless. This happens for example in the case of $\alpha$--stable random variables. Here, the problem of representing the CF or the PDF of random variables (r.vs) is examined by introducing fractional calculus. Two very remarkable results are obtained. Firstly, it is shown that the fractional derivatives of the CF in zero coincide with fractional moments. This is true also in case of CF not derivable in zero (like the CF of $\alpha$--stable r.vs). Moreover, it is shown that the CF may be represented by a generalized Taylor expansion involving fractional moments. The generalized Taylor series proposed is also able to represent the PDF in a perfect dual representation to that in terms of CF. The PDF representation in terms of fractional moments is especially accurate in the tails and this is very important in engineering problems, like estimating structural safety.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube